Fragment kątomierza z tworzywa sztucznego. Kolorowe wzory ilustrują rozkład naprężeń.

Naprężenie – w mechanice ośrodków ciągłych jest wielkością fizyczną wyrażającą siły wewnętrzne, jakie sąsiednie cząstki materiału ciągłego wywierają na siebie. Naprężenie reprezentuje równocześnie dwa kierunki: kierunek działania siły oraz kierunek orientacji powierzchni – nie jest więc ani skalarem ani wektorem, lecz tensorem drugiego rzędu.

W niektórych sytuacjach (np. jednoosiowy stan naprężenia) operować można jedynie na jednej bądź dwóch składowych tensora naprężenia. Składowe te można wówczas traktować w uproszczeniu jako wielkości skalarne, a ich ‘sumę geometryczną’ jako wielkość wektorową.

Naprężenie stanowi jedno z najważniejszych pojęć inżynierskich. Wyznaczanie naprężeń w poszczególnych punktach konstrukcji jest przeprowadzane w trakcie jej projektowania, gdyż naprężenia decydują o bezpieczeństwie użytkowania konstrukcji.

Definicja

Naprężenie w punkcie przekroju jest wielkością określoną wzorem:

lub w wersji różniczkowej

Wektor naprężenia można rozłożyć na składową styczną i składową normalną (prostopadłą) do przekroju:

gdzie:

– tensor naprężeń,
– wypadkowy wektor naprężenia,
– wypadkowy wektor elementarnych sił wewnętrznych działających na elementarną powierzchnię zorientowaną
– powierzchnia zorientowana, na która działa siła,
– wartość składowej normalnej (prostopadłej) do przekroju,
wersor normalny do powierzchni,
– składowa styczna, ścinająca (równoległa do przekroju),
wersor równoległy do powierzchni.

Jednostki

Jednostką naprężenia w układzie SI jest paskal, w skrócie Pa. W praktyce inżynierskiej stosuje się również atmosferę techniczną (kG/cm², kG/mm²), a w Stanach Zjednoczonych funt na cal kwadratowy (pound per square inch – psi oraz kilopound per square inch – ksi). W polskim środowisku inżynierskim na 1 psi mówi się niekiedy żartobiwie ‘1 pies’.

Przeliczniki jednostek:

1 kG/cm² = 98066,5 Pa
1 psi = 6894,757 Pa
1 ksi = 6894757 Pa = 6,894757 MPa

Kartezjański układ współrzędnych

Oznaczenia składowych stanu naprężenia.

W każdym punkcie ciała[1] można przyjąć (zaczepić) dowolnie zorientowany, kartezjański układ współrzędnych, w którym to układzie określa się składowe stanu naprężenia w tym punkcie. Wykonując trzy przekroje prostopadłe do osi przyjętego układu, można wyznaczyć, względem tych płaszczyzn, dziewięć składowych stanu naprężenia. Są to kolejno:

Jeżeli zwrot wektora naprężenia normalnego skierowany jest „na zewnątrz” otoczenia punktu, naprężenie normalne przyjmuje wartość dodatnią i nazywane jest naprężeniem rozciągającym. W przeciwnym razie jest naprężeniem ściskającym.

Na przykład w przypadku „górnej” powierzchni sześcianu (patrz rysunek), czyli prostopadłej do osi można napisać:

gdzie:

wersor osi a jednocześnie wektor normalny do rozpatrywanej powierzchni;
– wersory osi odpowiednio i

Składowe naprężeń stycznych spełniają następujące równości:

W rozważanym punkcie ciała można tak zorientować układ współrzędnych, aby naprężenia styczne były równe zeru, a niezerowe pozostawały jedynie naprężenia normalne. Tak zorientowany układ współrzędnych wyznacza kierunki główne stanu naprężenia. Odpowiadające im niezerowe składowe normalne to wartości główne naprężeń lub po prostu naprężenia główne: przy czym

Wyznaczanie kierunków naprężeń głównych ma zasadnicze znaczenie na przykład przy projektowaniu elementów i konstrukcji żelbetowych, przy projektowaniu których zbrojenie rozmieszcza się zgodnie z kierunkami maksymalnych naprężeń rozciągających.

Zapis tensorowy

Naprężenie dla danej powierzchni przekroju może być opisane przez tensor naprężenia reprezentowany przez macierz zawierającą składowe stanu naprężenia, której elementy przekształcają się wraz z przyjętym układem współrzędnych (np. jego obrotem).

Biorąc pod uwagę równowagę elementarnego sześcianu i zakładając, że nie występują naprężenia momentowe (dla których uogólnioną teorię sformułowali bracia Cosserat, 1909[2]), dowodzi się, że tensor naprężenia jest symetryczny, to jest:

Wykorzystując poczynione wcześniej założenia, dla układu kartezjańskiego można zapisać:

lub

gdzie:

– naprężenia normalne,
– naprężenia ścinające (styczne).

Stany podstawowe

Każdy stan naprężenia można zawsze rozłożyć na dwa stany podstawowe:

Aksjator (tensor kulisty) – stan hydrostatyczny (aksjacyjny) – wywołuje tylko zmianę objętości (gęstości) ciała.
Dewiator – stan czystego ścinania (dewiacyjny) – wywołuje tylko zmianę postaci ciała: sześcian zmienia się w dwuskośny równoległościan bez zmian długości krawędzi[2].

gdzie:

Niezmienniki stanu naprężenia

Tensor naprężenia, jak każdy tensor drugiego rzędu, ma trzy niezmienniki[3], czyli wielkości niezależne od układu współrzędnych

w których przez oznaczono naprężenia główne w rozważanym punkcie ciała.

 Osobny artykuł: Naprężenie główne.

Zobacz też

Przypisy

  1. Rozważając stan naprężenia w punkcie ciała, jako punkt można rozumieć w tym przypadku jego otoczenie w postaci sześcianu elementarnego – czyli o nieskończenie małej krawędzi.
  2. a b Andrzej Gawęcki: Mechanika materiałów i konstrukcji prętowych. Alma Mater, 2003, s. część 1, s. 3, 10.
  3. A. Gawęcki, Podstawy mechaniki konstrukcji prętowych, Wydawnictwo Politechniki Poznańskiej, 1985, s. 36.

Linki zewnętrzne

  • Fale naprężenia na linii – Applet (Spannungswellen auf einer Leitung – Applet – GER)

Witaj

Uczę się języka hebrajskiego. Tutaj go sobie utrwalam.

Źródło

Zawartość tej strony pochodzi stąd.

Odsyłacze

Generator Margonem

Podziel się