Tunel LHC, w którym montowane są nadprzewodzące elektromagnesy
Lokalizacja miejsca eksperymentu

Wielki Zderzacz Hadronów (ang. Large Hadron Collider, LHC) – największy na świecie akcelerator cząstek (hadronów), znajdujący się w Europejskim Ośrodku Badań Jądrowych CERN w pobliżu Genewy. LHC jest położony na terenie Francji oraz Szwajcarii[a].

Wielki Zderzacz Hadronów jest największą maszyną świata. Jego zasadnicze elementy są umieszczone w tunelu w kształcie torusa o długości około 27 km[b], położonym na głębokości od 50 do 175 m pod ziemią[1]. Wyniki zderzeń rejestrowane są przez dwa duże detektory cząstek elementarnych: ATLAS i CMS, dwa mniejsze ALICE i LHCb oraz trzy małe: TOTEM, LHCf i MoEDAL.

Urządzenie od 2008 miało zderzać dwie przeciwbieżne wiązki protonów. Energia zderzeń miała wynosić 14 TeV[c].

Cel

Głównym celem eksperymentów prowadzonych w LHC jest lepsze poznanie cząstek elementarnych. W szczególności fizycy chcą potwierdzić lub obalić istnienie bozonu Higgsa (potwierdzono w 2012 roku), cząstki ciemnej materii, superpartnerów, wyższych wymiarów, monopolu magnetycznego[2] i aksjonu[3].

Kalendarium

  • 16 grudnia 1994 – rada CERNu zatwierdziła rozpoczęcie projektu LHC z projektowaną energią zderzeń 14 TeV i włączeniu go w bazowy program badawczy organizacji. Budowa akceleratora miała ruszyć po zakończeniu pracy akceleratora LEP[4].
  • 2 listopada 2000 – zamknięcie akceleratora LEP. W jego tunelu znajdzie się przyszły akcelerator LHC.
  • 10 września 2008 – uruchomiono akcelerator LHC, wpuszczono wiązkę protonów w kierunku zgodnym z ruchem wskazówek zegara, a następnie powtórzono eksperyment z wiązką biegnącą w przeciwną stronę. Wiązki nie były przyspieszane w LHC i miały energię 450 GeV (0,45 TeV).
  • 19 września 2008 – w czasie testów mocy (bez wiązki) nastąpiło zwarcie na wadliwie wykonanym połączeniu elektrycznym między dwoma nadprzewodzącymi magnesami. Powstały najprawdopodobniej łuk elektryczny doprowadził do stopienia się złącza i rozszczelnienia magnesów. Implozja związana z rozszczelnieniem doprowadziła do wyzwolenia dużej energii, która zniszczyła lub uszkodziła blisko 60 magnesów (w większości 22-tonowych dipoli). Nastąpił wyciek kilku ton ciekłego helu do tunelu. Naprawa awarii trwała około 14 miesięcy[5].
  • 20 listopada 2009 – start LHC po trwającej 14 miesięcy naprawie
  • 13 grudnia 2009 – zarejestrowanie przez detektor CMS mionów.
  • 27 lutego 2010 – pierwsza wiązka w 2010 roku.
  • 18–19 marca 2010 – pierwsze synchroniczne podniesienie natężenia prądu w magnesach do 6000 A i uzyskanie wiązek o energiach 3,5 TeV.
  • 30 marca 2010 – pierwsze zderzenia wiązek protonów o energii 3,5 TeV (energia zderzenia 7 TeV).
  • 8 listopada 2010 – pierwsze zderzenia jonów ołowiu o energii 1,38 TeV na nukleon (energia zderzenia pary nukleonów 2,76 TeV).
  • 22 sierpnia 2011 – na konferencji Lepton-Photon w Mumbaju podano aktualne rezultaty poszukiwań cząstki Higgsa modelu standardowego oparte na wynikach eksperymentów CMS i ATLAS przy Wielkim Zderzaczu Hadronów LHC. Przeanalizowane dane wykluczały istnienie standardowego Higgsa o masie pomiędzy 145 GeV i 466 GeV. Pozostawał do zbadania obszar pomiędzy 114,4 GeV (granica z LEP) i 145 GeV oraz, uważany za znacznie mniej prawdopodobny, obszar 466-800 GeV[6].
  • 31 października 2011 – po 180 dniach pracy akceleratora zakończono zbieranie danych ze zderzeń proton – proton na rok 2011 przy energii 3,5 TeV na wiązkę. Zebrano około 6 odwrotnych femtobarnów danych, sześciokrotnie więcej niż planowano na ten okres. Akcelerator został przygotowywany do biegu ciężko jonowego, który podobnie jak w 2010 roku ma potrwać cztery tygodnie[7].
  • 13 grudnia 2011 – ogłoszono, że detektory CMS i ATLAS pokazują wzrost intensywności w przedziale 124–125 GeV, który może być szumem lub wskazywać na odkrycie bozonu Higgsa[8].
  • 22 grudnia 2011 – ogłoszono obserwację nowej cząstki, stanu χb (3P) bottomonium[9].
  • 4 lipca 2012 – CERN ogłosił wstępne wyniki analizy danych zebranych w latach 2011–2012 przez eksperymenty CMS i ATLAS, wskazujące na odkrycie nowej cząstki elementarnej, bozonu Higgsa o masie około 126 GeV, najcięższego jaki do tej pory został zaobserwowany[10].
  • 13 kwietnia 2013 – zespoły pracujące przy detektorach CMS i ATLAS potwierdziły otrzymanie bozonu Higgsa[11].
  • 14 kwietnia 2021 – po analizie badań z Wielkiego Zderzacza Hadronów oraz Tevatronu potwierdzono istnienie odderonu, co Leszek Łukaszuk przewidział teoretycznie w 1973 r.[12]

Koszt

  • 4,6 miliarda CHF całkowitego kosztu akceleratora
  • 1,1 miliarda CHF całkowitego udziału CERN w eksperymencie
  • 0,26 miliarda CHF całkowity udział w przetwarzaniu danych[13]

Budowa i działanie

Schemat LHC i urządzeń towarzyszących: ATLAS, CMS, ALICE, LHCb, synchrotrony protonowe (PS, SPS), akceleratory liniowe (P, Pb)

LHC jest zbudowany w tunelu akceleratora LEP (Large Electron Positron Collider – Wielki Zderzacz Elektronowo-Pozytonowy).

Na schemacie zaznaczono akceleratory oraz detektory współpracujące z głównym akceleratorem (LHC).

Przyspieszanie

Przyspieszane cząstki (protony) rozpoczynają swą drogę w akceleratorze liniowym – akceleratorze protonów (Linac 2, na schemacie P), jony o masie aż do masy ołowiu są przyspieszane w oddzielnym akceleratorze (Linac 3 – Pb).

Dalsza droga protonów i jonów jest wspólna, najpierw trafiają do Bustera Synchrotronu Protonowego (PSB, przyspieszanie 50 MeV – 1,6 GeV), następnie do Synchrotronu Protonowego (PS), w którym wiązka uzyskuje energię do 26 GeV i jest kształtowana.

Dalej Supersynchrotron Protonowy (SPS ang. Super Proton Synchrotron) przyspiesza protony do energii 450 GeV (0,45 TeV), na wyjściu z tego akceleratora można ukształtować dwie wiązki, które w LHC będą poruszały się w przeciwne strony.

Protony w każdej z wiązek będą przyspieszane do energii 7 TeV (środek masy wiązki względem laboratorium), co daje energię 14 TeV (CM) na zderzenie.

Eksperymenty

Symulacja komputerowa wyniku zderzenia cząstek
Detektor CMS

Gdy przyspieszone wiązki są zderzane, zbieraniem i analizą danych zajmuje się sześć eksperymentów skupionych wokół następujących detektorów:

  • ATLAS (A Toroidal LHC ApparatuS) – toroidalny detektor ogólnego przeznaczenia,
  • CMS (ang. Compact Muon Solenoid) – detektor ogólnego przeznaczenia zaprojektowany ze szczególnym naciskiem na identyfikację mionów i uzyskanie dużej rozdzielczości pomiaru ich pędów,
  • LHCb (ang. Large Hadron Collider beauty) – detektor mezonów B,
  • ALICE (ang. A Large Ion Collider Experiment) – detektor do obserwacji wyników zderzeń jonów,
  • TOTEM (ang. TOTal Elastic and diffractive cross section Measurement) – badanie całkowitych przekrojów czynnych, rozpraszania elastycznego i dysocjacji dyfrakcyjnej,
  • LHCf (ang. Large Hadron Collider forward) – symulacja promieniowania kosmicznego w laboratorium.
  • MoEDAL (ang. Monopole and Exotics Detector at the LHC) – poszukiwanie powolnych i silnie jonizujących stabilnych cząstek egzotycznych, np. masywnych cząstek supersymetrycznych lub monopoli magnetycznych. Eksperyment jest w fazie przygotowania[14].

Zderzenia protonów będą następowały 30 mln razy w ciągu sekundy, a detektory LHC będą produkować około 140 TB danych na dzień[15]. Dane z detektorów będą analizowane przez ogólnoświatowy gridowy system komputerowy WLCGrid. Budowa LHC wspomagana była przez projekt przetwarzania rozproszonego LHC@home.

Wielki Zderzacz Hadronów w kulturze masowej

  • Wielki Zderzacz Hadronów pojawił się w książce Anioły i demony Dana Browna; urządzenie wytwarzało antymaterię, która była wykorzystywana w walce z Watykanem. CERN opublikowało listę nieścisłości, krytykując błędne zobrazowanie działania urządzenia oraz ignorancję wobec prawdziwych zasad fizyki[16].
  • 3 listopada 2009 pojawiła się informacja o przegrzaniu olbrzymich, nadprzewodzących magnesów[17] z powodu upuszczonego przez ptaka kawałka bagietki. CERN zdementował tę pogłoskę przyznając, że w jednej z podstacji energetycznych zasilających kriodipole faktycznie znaleziono kawałki chleba. Niepotwierdzoną spekulacją pozostaje jednak ich związek z chwilowym brakiem zasilania i automatycznym zadziałaniem zabezpieczeń. Awaria nie spowodowała żadnych uszkodzeń ani opóźnień w pracy akceleratora, jak spekulowały media[18].
  • Jeden z pracowników CERN stworzył utwór rapowany Large Hadron Rap oraz teledysk wyjaśniający działanie urządzenia[19].
  • W 2013 roku zespół thrash-metalowy Megadeth wydał album zatytułowany Super Collider, którego nazwa oraz okładka odnoszą się do Wielkiego Zderzacza Hadronów.
  • Kanadyjski muzyk rockowy, Nim Vind napisał piosenkę „Hadron Collider” nawiązującą do zderzacza hadronów.
  • Japońska powieść wizualna – Steins Gate – i animacja o takim samym tytule przedstawia historię, w której grupa przyjaciół konstruuje mikrofalówkę, pozwalającą wysłać wiadomości tekstowe w przeszłość. Wykonują oni różne eksperymenty mające pozwolić określić naturę tego zjawiska. Badaniami nad podróżami w czasie zajmuje się również organizacja SERN, a w produkcji wielokrotnie przewijał się motyw LHC.
  • Odniesienia do Wielkiego Zderzacza Hadronów pojawiają się wielokrotnie w sitcomie "Teoria wielkiego podrywu" (ang. The Big Bang Theory).
  • Jeden z odcinków serialu "Świat według Kiepskich" nosi odcinek pt. "Wielki zderzacz hadronów." Jest to odcinek 562 z 2019 roku.[20]

Zobacz też

Uwagi

  1. Przecina granicę pomiędzy tymi państwami w czterech punktach.
  2. Średnica torusa ok. 9 km, średnica przekroju poprzecznego tunelu 3,8 m.
  3. 14 teraelektronowoltów = 14*1012 eV, czyli 14 bilionów elektronowoltów (14 000 000 000 000 eV).

Przypisy

  1. Symmetry magazine, Kwiecień 2005.
  2. Search for magnetic monopoles and stable particles with high electric charges in 8 TeV pp collisions with the ATLAS detector.
  3. LHC probes the hidden sector.
  4. Resolution approval of The Large Hadron Colider (LHC) Project, CERN, 16 grudnia 1994 [zarchiwizowane 2011-03-21] (ang.).
  5. CERN management confirms new LHC restart schedule, CERN, 9 lutego 2009 [zarchiwizowane 2009-02-18] (ang.)..
  6. LHC experiments present latest results at Mumbai conference, CERN, 22 sierpnia 2011 [zarchiwizowane 2011-10-26] (ang.).
  7. LHC proton run for 2011 reaches successful conclusion, CERN, 31 października 2011 [zarchiwizowane 2011-11-02] (ang.).
  8. Paul Rincon: LHC: Higgs boson ‘may have been glimpsed’. BBC News, 13 grudnia 2011. (ang.).
  9. Jonathan Amos: LHC reports discovery of its first new particle. BBC News, 22 grudnia 2011. (ang.).
  10. CERN experiments observe particle consistent with long-sought Higgs boson, CERN, 4 lipca 2012 [zarchiwizowane 2012-07-05].
  11. The ATLAS and CMS, Birth of a Higgs boson, CERN Courier, 26 kwietnia 2013 [zarchiwizowane 2013-06-25].
  12. Marcin Powęska, Po 48 latach potwierdzono istnienie odderonu [online], geekweek.interia.pl, 15 kwietnia 2021 [dostęp 2023-11-29].
  13. The LHC in general. How much does it cost?, [w:] Ask An Expert [online], CERN [zarchiwizowane 2011-08-07] (ang.).
  14. Grey Book.
  15. Henry E. Brady, The Challenge of Big Data and Data Science, „Annual Review of Political Science”, 22 (1), 2019, s. 297–323, DOI: 10.1146/annurev-polisci-090216-023229 (ang.).
  16. Angels and Demons, CERN, Dostęp 10 listopada 2015.
  17. http://www.newsweek.pl/artykuly/sekcje/nauka/bagietka-zablokowala-wielki-zderzacz-hadronow,48430,1[martwy link].
  18. CERN Document Server: The truth about Birds and Baguettes.
  19. Teledysk „Large Hadron Rap”.
  20. Wielki Zderzacz Hadronów [online], Kiepscy Wiki [dostęp 2023-04-05] (pol.).

Linki zewnętrzne

Polskojęzyczne
  • Polskie strony LHC
  • publikacja w otwartym dostępie – możesz ją przeczytać Karolina Głowacka, Anna Zalewska i Paweł Brückman, Fizyka cząstek: 30 lat Polski w CERN | Co nam powie LHC?, kanał „Radio Naukowe” na YouTube, 1 lipca 2021 [dostęp 2023-09-20].
  • publikacja w otwartym dostępie – możesz ją przeczytać Wielki Zderzacz Hadronów – początki materii, kanał Astronarium na YouTube, 17 września 2016 [dostęp 2023-11-09].
Anglojęzyczne
  • LHC – The Large Hadron Collider
  • Strona główna projektu WLCGrid. lcg.web.cern.ch. [zarchiwizowane z tego adresu (2006-08-19)].
  • Strona główna projektu LHC@home. athome.web.cern.ch. [zarchiwizowane z tego adresu (2006-02-08)].

Witaj

Uczę się języka hebrajskiego. Tutaj go sobie utrwalam.

Źródło

Zawartość tej strony pochodzi stąd.

Odsyłacze

Generator Margonem

Podziel się